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Materials and Methods 
 
Approach for delimiting the genetic region affecting color and color-pattern 
 

Previous work showed that each morph in T. cristinae is a chromosomal form 
underlain by a haplotype on a single linkage group (LG8), with restricted recombination 
between chromosomal forms (23, 24). However, it relied on a fragmented reference 
genome such that it could not delimit a single, contiguous region (i.e., locus) underlying 
each morph. We here delimit the locus underlying the morphs and quantify its change 
through time relative to the rest of the genome. 

 
To do so, we generated higher-quality reference genomes for a melanistic and a 

green morph of T. cristinae using Dovetail hi-rise scaffolding of Illumina reads (N50 = 
~16, 8 megabases, respectively)(32). Comparison of the reference genomes, linkage 
mapping (25), and genome-wide association (GWA) mapping allowed us to explicitly 
delimit a single, contiguous genomic region associated with color and pattern variation 
(Figure 2, S1, S2). Accordingly, this region exhibits three core haplotypes (i.e., alleles), 
one corresponding to each morph (with melanistic recessive to green body coloration and 
stripe recessive to unstriped pattern), and we refer to it as the Mel-Stripe locus hereafter. 
Details are contained below. 
 
Reference genome with Dovetail 
 

We generated reference genomes for a melanistic and a green morph using Dovetail 
technology (32). For the melanistic morph we used two sequencing runs. The first run 
(short reads + Chicago library) was done on a melanistic female from FHA caught in 
2015 (id: 15_0190). The second run (Chicago library only) was done using another 
melanistic female caught in 2016 in FHA (id 16_0359). For the green reference (short 
reads + Chicago libraries), a green unstriped female from population PRC caught in 2015 
was used (id 15_0802). The 2015 samples were flash frozen in liquid nitrogen, shipped to 
Sheffield and stored in a -80°C freezer. It was de-gutted prior to shipping to Dovetail. 
The 2016 sample was caught and degutted ‘fresh’ in California and sent directly to 
Dovetail. 

 
The Dovetail assembly method relies on building a conventional reference assembly 

using Meraculous with paired-end Illumina reads and then using Chicago libraries for 
scaffolding using the HiRise pipeline (32). Chicago libraries are produced by 
reconstituting chromatin in vitro with chaperones and histones, followed by crosslinking 
(i.e. DNA stabilization by creating covalent bonds among the histones), digestion with 
restriction enzymes, and ligation. This process results in many chimeric fragments 
composed from physically distant regions, but ensures they come from the same 
stabilized large fragment. In theory, the read pairs produced can have separations up to 
the maximum fragment size of the DNA. A model of insert distribution derived from the 
distances among the original fragments is then used for scaffolding.  
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The assembly based on melanistic females (draft 1.3) had a 63.0x sequencing depth 
with a total length of 953.3 Mb (73.3% of the estimated genome size by flow 
cytometry)(25). It comprised 4068 scaffolds (N50=16.4 Mb, N90=1.1 Mb, L50=16, 
L90=135), a significant improvement relative to the previous draft 0.3 (14,221 scaffolds, 
N50=312.5 Kb, N90=52 Kb, L50=788, L90=3869; DDBJ/ENA/GenBank accession 
MSSY00000000.3)(33). We clustered scaffolds in major linkage groups as described in 
detail below in the section on delimitation of the Mel-Stripe locus, resulting in draft 
1.3c2. This Whole Genome Shotgun project was deposited at DDBJ/ENA/GenBank 
under the accession PGFK00000000. The version described in this paper is version 
PGFK01000000. The assembly based on the green female had a 42.7x sequencing depth 
with a total length of 932.1Mb (71.1% of the estimated size). This assembly was poorer 
than the 1.3, but still significantly better than the previous 0.3 (5653 scaffolds, N50=8.2 
Mb, N90=503.2 Kb, L50=22, L90=222). This assembly was labeled as draft 2.1. This 
Whole Genome Shotgun project was deposited at DDBJ/ENA/GenBank under the 
accession PGTA00000000. The version described in this paper is version 
PGTA01000000. 
 
Genome-wide association (GWA) mapping  
 

We mapped color and pattern variation using previously published GBS data (33) 
aligned to the new reference genome 1.3b2. We aligned 96.1% (789,388,267) of reads 
from 602 individuals using BOWTIE 2.2.9 (45) with the '--very-sensitive-local' preset. We 
used SAMTOOLS 1.3.1 (46) to sort and index the alignments. We used aligned reads with 
a mapping quality score of at least 20 to call single nucleotide polymorphisms (SNPs) 
with SAMTOOLS mpileup and BCFTOOLS 1.3.1 (46), using the original consensus caller (-
c) with a P-value threshold of 0.05. From the 1,369,070 variants called, we excluded 
those with quality score of less than 20, sampling coverage of less than 50%, maximum 
depth more than 10 times the number of total, minor-allele frequency (MAF) equal or 
less than 0.01, and more than two alleles. The number of phenotyped individuals was 
different for color (590) and pattern (536) and we subsequently subset variants and 
applied filters relative to the respective number of samples. Thus, we retained 418,209 bi-
allelic variants for color and 416,405 variants for pattern. Both datasets were very similar, 
showing the same mean coverage depth per SNP per individual of 5.1x (95%: 0-15; per 
SNP average: 5.1x, 95%: 1.0-9.5; per individual average: 5.1, 95%: 2.2-7.9). We used 
custom Perl scripts along with a custom C++ program (alleleEst 0.1b) to co-estimate 
allele frequencies and genotypes using a Bayesian model (47). Genotype estimates were 
stored in BIMBAM format as values ranging from 0 to 2 representing minor allele dosage. 

 
Following past work (24) , we used GENABEL v1.8.0 (48) to perform single locus 

GWA mapping analyses. Briefly, we recoded genotype probabilities into genotype values 
accepted by GENABEL using a custom Perl script as follows: [0-0.5]=homozygote for 
major allele, [0.5-1.5]=heterozygote, [1.5-2]=homozygote for minor allele. Transformed 
genetic probabilities were filtered using GENABEL quality control function. SNPs with 
MAF inferior or equal to 1%, if any, were excluded from analysis. Individuals with 
extreme heterozygosity at a false discovery rate <1% and too high an identity by state 
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(hereafter IBS >=0.95, calculated on a subset of 2000 SNPs), if any, were discarded from 
analysis.  

 
Analyses were run controlling for population structure using the GENABEL egscore 

function (49). This function extracts principal components of a kinship matrix (here IBS 
indices) calculated using a subset of 2000 SNPs. The principal components are then used 
as covariates in the GWA linear models. The kinship matrix was computed excluding 
markers on linkage group 8 (to avoid over-correcting for genome-wide population 
structure by including causal variants), and excluding markers that were not assigned to 
linkage groups. We display results in the form of Manhattan plots. These graphics shows 
the association score (expressed as –log10(pvalue)) of every SNP tested along their 
physical position on the genome. Gaps between scaffolds are not represented on these 
graphics. SNP with a significant P-value after Bonferroni correction (calculated as 
0.05/number of tested SNPs) are displayed in red in the Manhattan plots. 
 
Defining the Mel-Stripe locus 
 

We combined results from GWA mapping of color and pattern with whole genome 
comparative alignments and recombination rate estimates from crosses to define 
approximate boundaries for the main locus responsible for color and pattern variation in 
T. cristinae (Figures S1, S2). We focused on scaffolds 702 and 128 from the melanistic 
genome, which contained the overwhelming majority of SNPs significantly associated 
with color (96%) and pattern (73%)(numbers refer to significance following a strict 
Bonferroni correction, i.e., P < 0.05/(no. of tests)). Our approach included the following 
steps, which we detail below: (i) generate a linkage map with the genome scaffolds, (ii) 
split one key scaffold (702) based on inconsistencies in the linkage map, (iii) align the 
green and melanistic morph genomes to each other, (iv) delimit the Mel-Stripe locus 
based on the total evidence from the mapping results and comparative alignment. These 
boundaries are meant to serve as a working hypothesis for the region controlling color 
and pattern (which can then be usefully contrasted to the genomic background), and not 
as the precise boundaries of the functional variant(s). 
 

Linkage map- We used the LepMap2 software (50) and previously published data 
from three F1 crosses to construct a linkage map for the T. cristinae melanistic morph 
genome sequence scaffolds (the data, comprising 158 million ~100 base pair, bp, 
genotyping-by-sequencing reads, are fully described in (25)(NCBI BioProject 
PRJNA356911). Families consisted of 114 (female melanistic by male green), 48 (female 
green by male melanistic), and 24 (female green striped by male melanistic) full-sib 
offspring. However, note that the GWA described above used a draft (1.3c2) based on 
only the largest family. Sequence data for the parents and offspring were aligned to the 
melanistic morph genome using bwa aln and samse (version 0.7.10-r789)(51) with a 
maximum of 4 miss-matches, and not more than 2 miss-matches in a 20 bp seed. We then 
compressed, sorted and indexed the alignments using SAMTOOLS (1.2)(46), and identified 
variable nucleotides using the call variant caller in BCFTOOLS (version 1.3)(46). We only 
considered alignments with a mapping quality of 10 or more and bases with a base 
quality of 15 or more, and we applied a population prior with theta set to 0.001 when 
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calling variants and only considered a SNP if the probability of the data assuming the 
locus was invariant was less than 0.01. We then applied a variant filter using vcfutils 
varFilter to retain only those SNPs with a total read depth of 464 and that were more than 
5 bp from the nearest gaps (insertion-deletions). 

 
We then generated the genotype input data for the mapping program, LepMap2. In 

doing so, we used custom Perl scripts to select the subset of SNPs that were 
recombination informative for each parent, and then estimated offspring genotype 
posterior probabilities using the genotype likelihood from BCFTOOLS (46)(from the vcf 
file) with a prior given by Mendelian inheritance expectation. We then only retained 
genotypes when the posterior probability of the most probable genotype was 0.95 or 
greater (in other cases the genotype estimate was converted to missing data). From this, 
we retained 17,478 SNPs (across all three families) for linkage map construction. As a 
first step with LepMap2, we further filtered the data for each family to retain only 
markers with missing data from fewer than 10 individuals, and with a P-value for 
segregation distortion greater than 0.005 (i.e., to remove loci with substantial deviations 
from Mendelian expectations). We allowed for a data error rate of 0.01. This resulted in a 
total of 4312 maternally informative SNPs and 5989 paternally informative SNPs.  

 
We next used the LepMap2 SeparateChromosomes algorithm with a LOD minimum 

of 4 and with a minimum linkage group size of 50 SNPs for initial assignment of SNPs to 
LGs. This resulted in 6873 SNPs being assigned to 12 linkage groups (i.e., autosomes, T. 
cristinae has 13 chromosomes, see below for consideration of the sex chromosome). The 
JoinSingles algorithm was then used to assign additional SNPs to these linkage groups at 
the lower LOD threshold of 3, if the difference in support between their best and next 
best possible linkage group differed by 2 LOD units. Next we used a custom Perl script 
and approach to assign entire scaffolds to linkage groups based on the SNP assignments. 
Specifically, for a scaffold to be assigned to a linkage group (and thus all of its SNPs to 
be assigned to a linkage groups) required at least two SNPs (and 10% of all SNPs on a 
scaffold) to have been assigned to that linkage group, and for fewer than half as many 
SNPs to have been assigned to the next best linkage group. Based on this, we were able 
to assign 237 scaffolds (which accounted for 89% of all SNPs) to linkage groups. Finally, 
the OrderMarkers algorithm in LepMap2 was used to estimate marker/SNP order on each 
linkage group. We took the median position in cM for all markers on a scaffold as the 
position for each scaffold in each cross. 

 
As one of the filters applied with LepMap2 was to remove markers with non-

Mendelian patterns of inheritance, we expected to miss the sex (i.e., X) chromosome, and 
thus to find 12 of the 13 chromosomes, as we did. We thus employed a complementary 
approach to identify the X-linked scaffolds (in T. cristinae males are XO and females are 
XX)(52). Using SAMTOOLS DEPTH (version 1.2)(51) and custom Perl scripts, we 
extracted the coverage data from a previously published GBS data set that was used for 
genome-wide association mapping and comprised 395 female and 197 male T. cristinae 
(data from (24), but aligned to the current genome as described above; we lacked data on 
offspring sex in the mapping families so used this data instead). We then identified 
scaffolds where the ratio of read depth for males to females was less than the expected 
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1:1 ratio expected for autosomal markers (specifically less than 0.75). Twenty-nine 
scaffolds met this requirement, and also were not assigned to the 12 autosomal scaffolds 
described above. These included 380 recombination informative markers. Seventeen of 
these scaffolds were joined into a single linkage group (presumably the X chromosome) 
using the SeparateChromosomes algorithm in LepMap2 with a LOD limit of 1.5 and a 
minimum size of 50 SNPs. The 17 scaffolds included 93.4% of the SNPs on the 29 
scaffolds we identified as possibly being X-linked based on the coverage ratio. We used 
OrderMarkers to order these markers as described for the X-chromosome. 

 
Splitting and re-mapping scaffold 702- Scaffold 702 from the melanistic morph 

genome showed a strong association with color and pattern in GWA analyses, but was 
not originally assigned to a linkage group. Upon examining this further we noted that one 
large chunk (SNPs up to position 14,171,514) of this scaffold was assigned to linkage 
group 8 (the linkage group where another scaffold, 128, showed a strong association with 
color and pattern and where we had previously seen associations with these traits) 
whereas a second large chunk (SNPs after position 14,757,049) was assigned to linkage 
group 5 (preventing placement of this scaffold). The portion assigned to linkage group 8 
showed an association with color and pattern, whereas the other half of the scaffold did 
not. Based on this evidence we inferred that this scaffold was over-assembled and thus 
we split scaffold 702 into three new scaffolds: 702.1 (positions 1-14,171,514), 702.2 
(starting at position 14,757,049) and 702.3 (the middle ambiguous section lacking an 
informative SNP from 14,171,414-14,757,049). The new scaffolds 702.1 and 702.2 were 
added to their respective linkage groups and the OrderMarkers algorithm in LepMap2 
was re-run for these linkage groups. 

 
Whole genome comparative alignment and defining Mel-Stripe- We aligned the 

melanistic and green morph genomes to each other using Mugsy (v1r2.3)(53). Our goal 
was twofold: (i) to refine the orientation of scaffolds 702.1 and 128 (the two scaffolds 
with the greatest association with color and pattern) based on overlap between these and 
scaffolds from the green morph genome, and (ii) to identify possible structural variants 
associated with the GWA color and pattern signal. Scaffold 702.1 (from the melanistic 
genome) partially aligned to green scaffold 1575; green scaffold 1575 also aligned to 
melanistic scaffold 2963 (which was ‘left’ of scaffold 702.1). Melanistic scaffold 2963 
showed a negative correlation between SNP map position and physical position, 
suggesting it was in a reverse orientation. This combined with the overlap of both 
melanistic scaffolds 2963 and 702.1 with green scaffold 1575 allowed us to also specify 
(flip) the orientation of 702.1. Melanistic scaffold 128 was in the correct orientation 
based on the correlation (positive) between SNP physical and cM positions. Many small 
green morph scaffolds with uncertain orientations span the right side of the re-orientated 
melanistic scaffold 702.1 and melanistic scaffold 128 (> 15 small scaffolds). No green 
scaffold was found that aligned the portion of melanistic scaffold 128 from 
approximately 5 to 6.4 mbps. This region also exhibits lower sequence coverage in green 
individuals, suggesting it might be a large insertion-deletion polymorphism.  

 
Given this information and the GWA mapping signal, we defined the bounds of a 

putative Mel-Stripe color and pattern locus as comprising melanistic scaffold 702.1 
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starting from the edge of the alignment with green scaffold 1575 (702.1 4,139,489 bp) to 
the edge of 702.1 (bp 1, given the reverse orientation) along with the neighboring 
melanistic scaffold 128 from bp 1 to right edge of the putative insertion-deletion 
polymorphism (bp 6,414,835). This specific region (that is, the Mel-Stripe locus) contains 
70% and 31% of SNPs associated with color and pattern, respectively (59% of color or 
pattern-associated SNPs). As a comparison, this region only contains about 1% of the 
sequenced SNPs. Thus there is a 61 and 31-fold enrichment of color and pattern 
associated SNPs, respectively, in the Mel-Stripe locus. As emphasized above, our main 
goal was to delimit a Mel-Stripe locus that could be contrasted to the genomic 
background, and not to precisely identify causal functional variants affecting color and 
pattern. A schematic summary of the delimitation of Mel-Stripe can be found in Figure 
S1. 

 
Genomic change at the Mel-Stripe locus 
 

We quantified changes at Mel-Stripe between time periods using three published 
data sets: (1) genotyping-by-sequencing (GBS) data from 1102 individuals collected in a 
natural population on Adenostoma (FHA) in 2011 and 2013 (n = 500 and 602, 
respectively)(30, 33), (2) 491 re-sequenced whole genomes from an eight-day (i.e., 
within-generation) release and recapture field experiment (30), and (3) GBS data from 
451 individuals in a between-year (i.e., between-generation) field transplant experiment 
(25). The within-generation experiment involved releasing 500 T. cristinae in a paired-
block design and recapturing the survivors (30). We obtained whole genome sequence 
data from 491 of these individuals (33), allowing us to compare allele frequency changes 
between release and recapture. As described previously (25), the between-generation 
experiment involved transplanting 2000 stick insects from a single variable population 
(OGA) onto 10 host plant bushes in a block design (five blocks each with one 
Adenostoma bush and one Ceanothus bush per block; 200 T. cristinae were released on 
each bush). 421 F1 descendants of these individuals were then captured the following 
year (2011). We compared 30 individuals representative of the founders (collected in 
2010) to the 421 F1s. Phenotypic change (proportion at time period two minus proportion 
at time period one) for each of these three data sets was as follows: FHA, stripe change = 
0.06, unstriped change = -0.11, melanistic change = 0.05; within-generation experiment, 
stripe change = 0.05, unstriped change = -0.04, melanistic change = 0.01; between-
generation experiment, stripe change = -0.24, unstriped change = 0.32, melanistic change 
= -0.07). 

 
The GBS data were aligned to the T. cristinae reference genome with bwa (version 

07.10-r789)(51) using the aln and samse algorithms. We allowed 5 miss-matches, 2 miss-
matches in an initial 20 bp seed, trimmed bases with phred-scaled quality scores lower 
than 10, and only placed reads with a single best match. We then used SAMTOOLS 
(version 1.2)(46) and the BCFTOOLS call algorithm (version 1.3)(46) to identify SNPs and 
calculate genotype likelihoods. We used the recommended mapping quality adjustment (-
C 50), skipped alignments with a mapping quality less than 20 and bases with a base 
quality less than 30, and used the multi-allelic SNP caller with θ set to 0.001 and a 
posterior probability of 0.01 or less for the homozygous reference genotype given the 
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data to consider a SNP variable. We then filtered the initial set of SNPs to retain only 
those with a mean coverage of  >= 2X (per individual), total coverage (across all 
individuals) less then three standard deviations above the mean across all loci, at least 10 
reads of the non-reference allele, a mapping quality of 30, sequence data for at least 80% 
of the individuals, a minimum minor allele frequency of 0.01, less then 1% of reads in the 
reverse orientation (with our GBS method all reads should be in the same orientation), 
and separated by at least 5 bps. Filtering was done using custom Perl scripts. Following 
filtering, we retained 178,141 SNPs for the natural FHA population and 249,074 SNPs 
for the between-generation experiment. 

 
We aligned the whole genome re-sequence data from the within-generation 

experiment to our reference genome using the bwa (version 07.10-r789)(51) mem 
algorithm with a band width of 100, a 20 bp seed length and a minimum score for output 
of 30. We then used SAMTOOLS (46) to compress, sort and index the alignments, and 
Picard Tools to mark and remove PCR duplicates (version 
2.1.1)(https://broadinstitute.github.io/picard/). We then used the GATK HaplotypeCaller 
and GenotypeGVCFs modules (version 3.7)(54) to call variants and calculate genotype 
likelihoods. We used a minimum base quality score of 30 for consideration in 
calculations, a prior probability of heterozygosity of 0.001, and called variants with a 
minimum phred-scaled confidence of 50. The following filters were then applied using 
custom Perl scripts: minimum coverage of 1x per individual, a minimum value of the 
base quality rank sum test of -8, a minimum value of the mapping quality rank sum test 
of -12.5, a minimum value of the read position rank sum test of -8, a minimum ratio of 
variant confidence to non-reference read depth of 2, a minimum mapping quality of 40, a 
maximum phred-scaled P-value of Fisher's exact test for strand bias of 60, and a 
minimum minor allele frequency of 0.01. The resulting 6,175,495 SNPs were used for 
downstream analyses. 

 
We obtained maximum likelihood estimates of allele frequencies for all populations 

/ experimental samples using an expectation-maximization (EM) algorithm, as described 
in (55). For this, we used a convergence tolerance of 0.001 and allowed for a maximum 
of 20 EM iterations.  

  
Population genomic parameters were then calculated based on the Mel-Stripe locus 

and additional reference loci based on the maximum likelihood allele frequency 
estimates. Additional loci were defined for all genome scaffolds placed on linkage groups 
that contained as many SNPs as Mel-Stripe and were defined by selecting (at random) a 
contiguous block of SNPs of the same number as Mel-Stripe (FHA: 780 SNPs, 40 
reference loci; between-generation experiment: 1180 SNPs, 39 reference loci; within-
generation experiment: 47,305 SNPs, 16 reference loci).  

 
We analyzed genomic change based on raw allele frequency changes, allele 

frequency changes controlling for underlying genetic diversity (i.e., residual change), and 
using Wright’s Fixation Index (FST). Specifically, we calculated nucleotide diversity (π) 
within the 2011 FHA sample or the founders of each experiment, allele frequency change 
between these samples and the 2013 FHA sample (natural FHA population) or recaptured 



 
 

9 
 

stick insects (both experiments), the residuals from regressing change on diversity, and 
FST = Σ(πtotal - πsubpop)/Σ(πtotal). In all cases, Mel-Stripe showed the most extreme change 
(more than any other locus). Detailed results are as follows. For FHA, raw change was = 
0.0273, residual change was = 0.00516, and FST was = 0.0051 (P = 0.024, Exact 
probability). For the within-generation experiment, raw change was = 0.0340, residual 
change was = 0.00212, and FST was = 0.0030 (P = 0.059). For the between-generation 
experiment, raw change was = 0.0988, residual change was = 0.0595, and FST was = 
0.0540 (P = 0.025; Fisher’s combined probability test across data sets: X2 = 20.50, d.f. = 
6, P = 0.0023). 
 
Autoregressive-moving-average models fit to different long-term evolutionary data sets 
 

We fit Bayesian autoregressive-moving-average (ARMA) models to 10 evolutionary 
time-series data sets (details of each data set are given below; two are from T. cristinae 
and the others from published data in other systems). This approach uses past 
observations as covariates in a model. There are two specific types of terms in these 
models, autoregressive terms (AR) and moving-average terms (MA). AR terms use the 
data values from prior years as covariates whereas the MA terms use residuals from prior 
years as covariates. Different numbers of prior years (i.e., different order models) can be 
considered. 

 
Specifics of the models are as follows. We first considered models with order 0, 1 or 

2 for the auto-regressive and moving-average components of the model; a null model 
with a constant expectation was included for comparison. As an example, ARMA (1,2) 
denotes a model with order 1 for the autoregressive component and order 2 for the 
moving-average component, meaning that information from the last year is used for the 
autoregressive component and that information from the last two years is used for the 
moving-average component. The general form of the model is yt ~ Normal(µt , τ) and µt = 
c + Σi θi y(t-i) + Σj φj ε(t-1), where y(t-i) is the data value i years in the past, ε(t-1) is the error 
term from j years, and the sums are over the order of the autoregressive and moving-
average components of the model. We assumed a weakly stationary model and thus 
applied the re-parameterization and Beta prior scheme proposed by (56, 57). We placed a 
normal prior on the grand mean, c ~ Normal (mean = 0, precision = 0.01), and gamma 
prior on the precision for the sampling distribution, τ ~ gamma (0.01, 0.001). 

 
Each model was fit for each data set and the best model was selected based on 

deviance information criterion (DIC; the model with the lowest DIC was chosen). When 
the null model was best, the next best model was used for downstream analyses (the null 
model would not provide meaningful results for cross-validation or forecasting as the 
expectation would be the same for each year). Two estimates of DIC were obtained for 
each model (to verify consistency), each based on 10 Markov chain Monte Carlo 
(MCMC) chains each with 100,000 iterations, a 50,000 step burn-in and a thinning 
interval of 50. MCMC analyses were conducted using the rjags JAGS interface.  

 
We then quantified the predictability of each evolutionary time series using the best 

ARMA model. We used two complementary approaches: leave-one-out cross-validation 
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and forecasting. For leave-one-out cross-validation, we fit the relevant ARMA model for 
each data set, but with one year of the data set removed (this was done with each year in 
turn). The missing year's data value (evolutionary change) was then predicted from the 
ARMA model. We used these estimates to assess the relationship (based on a simple 
linear model) between the true and predicted evolutionary change. 

 
For forecasting, we dropped the most recent n years of data, where n was (3, 4, ..., 9, 

10), and fit the relevant ARMA model to predict the data values for the dropped data. We 
then calculated the Pearson correlation coefficient and coefficient of determination 
between the observed and predicted (forecast) change for the dropped years for each 
value of n. This is conceptually analogous to predicting/forecasting future (as of yet 
unobserved) evolutionary change. Cross-validation and forecasting results were also 
based on average of results from two independent MCMC model fits, each comprising 10 
chains with 100,000 iterations, a 50,000 iteration burn-in and a thinning interval of 50. 

 
The data analyzed include evolutionary time series for discrete trait frequencies, and 

in the case of Darwin’s finches, quantitative traits (mean value). In both cases, we first 
obtained point estimates of the value (mean or frequency) for each generation and then 
converted these into evolutionary change data sets (i.e., the data point for year i was the 
value [mean or frequency] in year i+1 minus the value in year i). The nature and source 
of each data set are described below. Results are provided in the main text, Database S1, 
and Figures S3-S6. 
 
Long-term field studies in T. cristinae 
 

We compiled data on morph frequencies in T. cristinae using samples collected in 
the spring using sweep nets between 1990 and 2017. All individual were scored as 
‘striped’, ‘unstriped’, or ‘melanistic’, or occasionally when it was difficult to distinguish 
between the first two categories as ‘intermediate-striped’. These classifications have been 
found to be highly repeatable in past work (26, 35, 36, 58). Samples from 1990 to 1999 
were taken and scored by Cristina Sandoval, who then trained PN in 2000. PN collected 
and scored most samples from 2000 to 2017. 

 
GPS coordinates of all localities were taken at and then used to estimate elevation 

using ‘point sampling tool’ on QGIS 2.16.2 (59). The elevation values were extracted 
from 1/3 arc-sec Digital Elevation Models (DEM) at the location of the populations’ 
coordinates. All DEMs were obtained from United States Geological Survey Dataset 
(USGS), available at National Map Viewer (https://viewer.nationalmap.gov/). Host-plant 
collected on (Ceanothus or Adenostoma) was recorded for all individuals. We estimated 
the proportion of individuals in a sample that were striped (% striped) using all striped 
and unstriped individuals (excluding melanistic individuals). We estimated the proportion 
of individuals in a sample that were melanistic (% melanistic) using all individuals. 
Detailed information on these localities (i.e., GPS coordinates and elevations), morph 
frequencies, sample sizes, etc. is provided in Database S1. 
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We observed consistent year-to-year increases and then decreases in the frequency 
of striped morphs at HV (see main text). We thus computed the binomial probability of 
the observed stripe time series alternating between an increase and decrease in stripe 
frequency every other year. Specifically, conditional on the first year, we calculated the 
probability that every other year showed a reversal in the direction of evolution as 0.517 = 
7.6e-6 (the full time series includes 18 years, the null probability that evolution reverses 
direction was assumed to be 0.5, and thus the probability of not changing direction was 
also 0.5).  
 
Climatic data and analyses 
 

We collated data on mean springtime statewide temperature in California using 
publicly available records (National Centers for Environmental Information, 
https://www.ncdc.noaa.gov/cag/time-series/us/4/0/tavg/3/4/1990-
2016?base_prd=true&firstbaseyear=1901&lastbaseyear=2000). We focused on 
temperature averages across March, April, and May as these are the three months that T. 
cristinae is by far most active (most of the rest of the year is spent in egg diapause)(26, 
34, 58). Nonetheless, we present results from different combinations of spring months 
below. 

 
We fit a hierarchical Bayesian model for the full T. cristinae color data set, using 

data from all populations (i.e., not just HV) collected from 1990 to 2017. We did so to: (i) 
test for an association between climate and the melanistic morph frequency, and (ii) 
determine how well climate predicts color morph frequency across space and time. 

 
We assumed a binomial sampling distribution for the observed number of melanistic 

morphs for a site and year (yij) given the number of T. cristinae sampled (nij) and the true 
melanistic morph frequency (pij). We connected this to a linear model with the logit link 
function, such that logit(pij) = αi + βi xtemperature + θ xyear + εij, where αi is a population 
(site) specific intercept, βi denotes the effect of climate (temperature, see details below) 
on melanistic morph frequency for population i, θ is an overall effect of year (allowing 
for a general increase or decrease in melanistic morph frequency), and εij is an error term 
that accounts for over-dispersion relative to binomial sampling. We gave the ε values a 
normal prior with mean of 0 and precision parameter τ ~ gamma(0.1, 0.01) (we imposed 
a sum-to-zero constraint on the ε values). We then defined linear models at the next level 
of the hierarchy for the population specific α and β coefficients (for the intercept and 
effect of temperature, respectively), such that, 

 
αi = a1 + b1 xelevation + c1 xhost + d1 xmountain 
 
βi = a2 + b2 xelevation + c2 xhost + d2 xmountain 
 
Here,  xelevation is the elevation at a location, xhost is a binary indicator variable for host 

plant (Adenostoma = 0, Ceanothus = 1), xmountain is a binary indicator variable denoting 
the mountain range (0 = Highway 154; 1 = Refugio), and a1, a2, b1, b2, c1, c2, d1 and d2 
are regression coefficients (all given Normal priors with mean 0 and precision 0.0001). 
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We fit this model with three different temperature variables: (i) mean temperature 

for March, April and May (when T. cristinae are most active), (ii) mean temperature for 
February, March, April and May, and (iii) mean temperature for February, March and 
April. We used the rjags interface with JAGS to obtain Markov chain Monte Carlo 
(MCMC) parameter estimates for the model parameters. In each case, we ran three 
chains, each with a 10,000 iteration burn-in, 25,000 post burn-in iterations and a thinning 
interval of 10. We used four-fold cross-validation to determine the predictive power of 
the models. Specifically, we split the data set into four random subsets (only considering 
cases where the sample size was 25 or greater) and used three subsets to fit the model and 
validated the model by predicting morph frequencies for the other subset (MCMC options 
identical to those for the main models were used). 

 
Temperature was generally associated with a higher frequency of melanistic T. 

cristinae (a2 was positive), but less so at Ceanothus sites (c2 was negative) (Table S2; 
estimates of the effect of temperature for each site and year are shown in the main text). 
Melanistic morphs were less common at higher elevations and on Refugio independent of 
temperature. Cross-validation results showed that the models had significant but modest 
predictive power. For example, with the March, April, May temperature model, the 
Pearson correlation between observed and predicted melanistic morph frequencies was r 
= 0.16 (95% CIs = 0.040-0.28, P = 0.0102, r2 from a linear model = 0.027). The other 
temperature variables gave similar results: February, March, April, May temperature, r = 
0.15 (95% CIs = 0.025-0.27, P = 0.0188, r2 from a linear model = 0.022); February, 
March, April temperature, r = 0.19 (95% CIs = 0.069-0.31, P = 0.0024, r2 from a linear 
model = 0.037). 
 
Thermoregulatory experiments 
 

We conducted lab thermoregulatory experiments testing the desiccation / heat 
tolerance of green versus melanistic T. cristinae. Heat stemmed from a desk lamp (K-
mart model ksn: 0-02546202-9), raised 4.5 inches above two petri dishes that were 
stacked on top of each other and pushed to touch the base of the lamp. A third petri dish 
containing an individual T. cristinae was placed on top of the other two. The bulb used a 
Sylvania A19 halogen 100-watt replacement that used 72-watts. A total of four such lamp 
set-ups were used, allowing simultaneous assays of four T. cristinae (always two green 
and two melanistic, assigned randomly to one of the four lamps at the initiation of an 
assay, and then randomly re-assigned to one of the four after each weighing census, see 
below). Details of the procedure were as follows. Each individual was weighed. Each 
lamp was then turned on for ten minutes. Placing test animals underneath the lamps then 
started the trials. Every twenty minutes all four individuals were removed simultaneously 
and weighed in a random order, and scored as dead or alive. They were then assigned 
randomly back to one of the four test lamps. This procedure was repeated until 180 
minutes had passed. A total of eight sets of such trials were run (total n = 32). 

 
We fit a Cox proportional hazards model to the survival data to test for an effect of 

morph (green versus melanistic) on survival (60). For this, we used the survival package 
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in R (61). We used the exact partial likelihood method, which is advantageous relative to 
the more common Efron method when time is measured in discrete intervals and tied 
times of death are thus more likely. We detected a significant effect of morph on survival 
time (exp(B) = 3.57, 95% CIs = 1.34-9.51, P = 0.0111). Note that exp(B) > 1 indicates 
melanistic morphs died from desiccation more rapidly than green morphs. 
 
Estimating genotype-specific fitness using genomic data 
 

We estimated selection coefficients/relative fitnesses for different genotypes at the 
Mel-Stripe locus based on the within-generation release-recapture experiment and based 
on patterns of evolutionary change between the 2013 and 2011 FHA samples. Similar to 
(23) we used PCA and k-means clustering to assign individuals one of six Mel-Stripe 
genotypes: homozygous for the stripe haplotype/allele (s/s), homozygous for the green 
unstriped haplotype (u/u), homozygous for the melanistic haplotype (m/m), or one of the 
three possible heterozygotes (s/u, s/m or u/m)(Fig. S2). We conducted a PCA on the 
individual genotype matrix for each of the two data sets. This was done for all individuals 
and the 780 SNPs comprising the Mel-Stripe locus. We then clustered T. cristinae based 
on the first two genetic PCs with k-means clustering; this was done with the R kmeans 
function with six centers, 100 starts and a maximum of 200 iterations. An initial round of 
clustering was performed to define cluster centers. For this round an equal number of 
green, striped and melanistic individuals were used (42 of each, which was the number of 
green individuals). We then used those centers to cluster all individuals with a second 
round of k-means clustering (this included individuals with no phenotypic data). 
Assignments from k-means clustering corresponded well with groups of individuals with 
the same color/pattern (i.e., stripe) phenotype, and were the basis for designating 
genotypes. 

 
For the within-generation experimental data, we fit a Bayesian beta-binomial model 

to infer fitness values. Here, we inferred the survival probability of individuals with each 
genotype using a binomial sampling distribution for the number of recaptures given the 
probability of survival and recapture (pgenotype) and the number of individuals released 
with that genotype (ngenotype). We assigned an uninformative (Jeffery's) beta prior for each 
survival probability. Posterior samples (N = 5000 each) were obtained from the closed 
form solution for the posterior using R (62), and were then used to calculate the relative 
fitness of each genotype by dividing the survival probability by the survival probability 
with the highest fitness (based on the point estimate; s/s).  

 
An alternative model was required for the FHA data, which was based on change 

over two generations (2011 versus 2013). During this time haplotype frequencies went 
from m = 0.316, s = 0.602, and u = 0.082 to m = 0.360, s = 0.570, and u = 0.071. Perhaps 
more importantly, in both years, we detected an excess of the s/m heterozygotes (0.514 in 
2011 and 0.502 in 2013) relative to Hardy-Weinberg expectations (0.380 and 0.410, 
respectively). For this analysis, we assumed the following relative fitness values: s/m = 1 
(based on observed patterns of change this genotype appeared to have the highest fitness), 
m/m = 1 + s1, s/s = 1 + s2, u/u = 1 + s2 + s3, s/u = 1 + s2 + s3 * s4, and m/u = 1 + s1 + s3 
* s4.  Thus, s1 and s2 define the fitness value of the m/m and s/s homozygote in a way 
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that allows for any form of dominance. In turn, s3 defines the fitness of u/u relative to s/s 
(i.e., after adding s2). The s/u heterozygote is 1 + s2 + s3 * s4, thus s4 is the heterozygous 
effect. This is similar for m/u. We took an approximate Bayesian computation (ABC) 
approach to estimating the selection coefficients. We first sampled selection coefficients 
from their priors, U(-0.5, 0.5) for s1, s2, and s3, and U(0,1) for s4. We then simulated 
evolution forward in time for two generations according to a Wright-Fisher model with 
the observed starting genotype frequencies, and dynamics governed by drift and the 
sampled the selection coefficients (assuming viability selection). We assumed a variance 
effective population size of 110.3, which was inferred from patterns of change across 
178,141 SNPs (following general procedures outlined in (63)). We ran 1,000,000 ABC 
simulations. We then used the ridge regression adjustment method in the R abc package 
to obtain samples form the posterior distribution from the simulation output. We retained 
the top 0.5% of simulations with the smallest distance between the simulated and 
observed genotype frequencies in the 2013 sample. We then converted the estimates of 
selection coefficients to relative fitnesses. 
 
Field experiment testing for NFDS 
 

We implemented a field transplant experiment testing for NFDS. A total of 1000 
individuals were transplanted, collected from March 21-24, 2017 from populations PRNC 
(latitude 34.53, longitude -119.85), OUTA (latitude 34.53, longitude -119.84), HVC 
(latitude 34.49, longitude -119.79), and HVA (latitude 34.49, longitude -119.79). 
Numbers were as follows: green-unstriped morphs, PRCN 220, OUTA 50, HVC 140, 
HVA 90; green-striped morphs, PRCN 30, OUTA 100, HVA 280, HVC 90. Individuals 
were kept in groups of 10 and each group was randomly assigned to one of two 
treatments: striped individuals common (40 striped and 10 unstriped individuals) versus 
striped individuals rare (10 striped and 40 unstriped individuals). Each of these groups of 
50 individuals was then randomly assigned to one of 20 experimental bushes (in the 
general area of latitude 34.51 and longitude 119.80). Each bush was cleared of existing T. 
cristinae (the only Timema species occurring in this area) by sampling it each day March 
21-24. Past work demonstrates that this clears bushes of the overwhelming majority of 
Timema (25, 26, 58). Nonetheless, as an additional measure for ensuring accurate 
identification of experimental animals, each transplanted individual was marked with fine 
tip sharpie on the underbelly. This mark allowed us to distinguish experimental animals 
from any remaining residents, and the marks are not visible when Timema are resting on 
leaves. Individuals were released on March 26th between 9am and 3pm. Each individual 
was released with tweezers onto an experimental plant and checked to cling well to their 
transplanted host. Individuals were recaptured using visual surveys and sweep nets on 
March 31st, as in past work (25, 26, 30, 35, 36, 58), and scored as striped or unstriped. 

 
We fit a Bayesian beta-binomial model to assess the effect of initial stripe frequency 

on the recapture stripe frequency. We assumed that the recapture stripe count for bush i 
was yi ~ binomial(pi, ni), where pi is the true stripe recapture rate for a given initial release 
stripe frequency. We then placed independent, uninformative beta priors on pi for each 
treatment. MCMC (via rjags) was then used to draw samples from posterior distribution. 
Stripe frequencies clearly increased when stripe was initially rare (recapture frequency = 
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0.46, 95% CIs - 0.37-0.55; change in stripe frequency = 0.26, 95% CIs = 0.17-0.35; 
posterior probability that stripe increased > 0.99). In contrast, we found no clear, 
consistent pattern of change when stripe was initially common (change in stripe 
frequency = -0.006, 95% CIs = -0.093-0.063; posterior probability that stripe increased > 
0.43). We inferred selection coefficients for each treatment (20% vs. 80% initial stripe 
frequency) based on the estimated posterior distribution for the true stripe recapture rate. 
We defined relative fitnesses for striped and green stick insects as wstripe = 1 and wgreen = 
1 - s, respectively. Here s is the selection coefficient. We then estimated wgreen based on  
the difference between release and recapture frequencies of the striped morph, such that 
pi = (p0 wstripe)/(p0 * wstripe + (1-p0) * wgreen), which can be rearranged as wgreen = (p0 * pi - 
p0)/((p0-1) * pi). Here p0 is the stripe release frequency (0.2 or 0.8). 
 
Estimation of differences between hosts 
 

We fit a hierarchical Bayesian model to quantify the overall difference in stripe 
frequency between hosts across years. A key aspect of this model was that it allowed us 
to account for the heterogeneity in sampling, including the fact that a subset of sites was 
sampled each year. We used all samples from the main mountain, Highway 154. This 
included 21,067 data points (T. cristinae scored as striped versus unstriped, we excluded 
melanistic morphs) from 274 collections (site by year combinations; 29 sites with a mean 
of 9.4 visits per site) spanning 27 years (1990 to 2017).  

 
We specified generalized linear models for the stripe frequency at each location 

(site) for each year (nearby or inter-digitated samples from different hosts were 
considered different sites). We included effects for site and year, and modeled each of 
these hierarchically by placing a normal prior on them with parameter values estimated 
from the data (except the means for the year effects, which were fixed at 0 to ensure the 
model parameters were identifiable). We placed uninformative priors on the site means, 
normal with mean 0 and precision 1e-6, and on the precision parameters, gamma(0.01, 
0.001). We used Markov chain Monte Carlo to generate samples from the posterior 
distribution and used these samples to compute several key derived parameters: the 
yearly mean stripe frequency for each host and the yearly mean difference in stripe 
frequency between hosts. Inferences were based on three MCMC chains, each with a 
10,000 iteration burn-in, 20,000 sampling iterations and a thinning interval of 5 (MCMC 
analyses were conducted with rjags). Point estimates (posterior medians) for the 
difference between hosts (stripe frequency on Adenostoma minus Ceanothus) ranged 
from 0.30 to 0.64 (mean = 0.56), and for all but one year (2011) the 95% CIs for the 
difference in stripe frequency excluded 0 (i.e., they were significantly positive). 
 
Estimating predictability in finches and moths 
 

The data analyzed were obtained as follows. We obtained data on Geospiza fortis 
and Geospiza scandens body size and beak size from (21). The data are from Daphne 
Major from 1973 to 2012. Three measurements were included: principal components 
(PC) 1 body size, PC1 beak size and PC2 beak size. We obtained data on Panaxia 
dominula medionigra allele frequency from (40). We used the data from 1940-1978, as 
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there were no gaps in sampling during this time interval. We obtained data on Biston 
betularia peppered moth morph frequency from (41). We used the data from Leeds, 
which was most complete, and restricted analysis to years 1967 to 1995 because there 
were several years after 1995 with very low sample sizes. ARMA Models were fit to the 
data as described for T. cristinae above. 

 
We then asked whether and to what extent including rainfall data on Daphne Major 

(also from 1973 to 2012) improved the fit of the Geospiza time series data sets. We 
focused on rainfall as it is thought to be a strong determinant of seed size, which is a key 
source of selection on these finches (1, 21). We obtained the rainfall data from (21). We 
fit Bayesian ARMA models of order 0, 1, or 2 with respect to the AR and MA 
components (as described previously) that also included rainfall (MCMC details were 
identical to those described above). We placed an uninformative prior, Normal(mean = 0, 
precision = 1e-5), on the coefficient for rainfall. We then used the best ARMA model that 
included rainfall (based on DIC) for predictive cross-validation and forecasting as 
described above for the pure ARMA models (without rainfall). We then compared the 
predictive performance of the best ARMA models with and without rainfall.
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Fig. S1. Schematic illustrating the delimitation of the Mel-Stripe locus using two 
reference genomes. See text of supplementary materials for details. 
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Fig. S2. Principal Components Analysis (PCA) ordination of 1102 T. cristinae from 
FHA based on genetic data from the Mel-Stripe locus. Points (left panel) and 
numbers (right panel) denote individuals, and are colored based on color and 
pattern phenotypes (we did not have phenotypic data for some individuals). In the 
right panel, numbers denote cluster/group assignments from k-means clustering 
with k=6. Cluster assignments were used to assign genotypes when estimating 
selection. 
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Fig. S3. Evolutionary time series for Geospiza fortis body size (a), beak PC1 (b), beak 
PC2 (c), G. scandens body size (d), beak PC1 (e), beak PC2 (f), Panaxia dominula 
medionigra frequency (g), and Biston betularia "peppered" frequency. 
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Fig. S4. Change in mean trait values or morph/allele frequency for Geospiza fortis 
body size (a), beak PC1 (b), beak PC2 (c), G. scandens body size (d), beak PC1 (e), 
beak PC2 (f), Panaxia dominula medionigra frequency (g), and Biston betularia 
"peppered" frequency. Data points for each year denote that change observed from 
that year to the next year. 
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Fig. S5. Predictive r2 from ARMA forecasting models for evolutionary time series in 
Geospiza fortis body size (a), beak PC1 (b), beak PC2 (c), G. scandens body size (d), 
beak PC1 (e), beak PC2 (f), Panaxia dominula medionigra frequency (g), and Biston 
betularia "peppered" frequency. r2 between the observed and predicted values of 
change are shown from models dropping (and predicting) the last three to 10 years 
(r2 was computed from a simple linear model). 
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Fig. S6. Predictive correlations from ARMA forecasting models for evolutionary 
time series in Geospiza fortis body size (a), beak PC1 (b), beak PC2 (c), G. scandens 
body size (d), beak PC1 (e), beak PC2 (f), Panaxia dominula medionigra frequency 
(g), and Biston betularia "peppered" frequency. Pearson correlations (solid line and 
points) and 95% confidence intervals (shaded polygons) between the observed and 
predicted values of change are shown from models dropping (and predicting) the 
last three to 10 years. 
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Table S1. Summary of cross-validation and forecasting results (values for 
forecasting are medians from estimates based on 3 to 10 year forecasts). Bold font 
denotes cases where the ARMA model was preferred over a null model with a 
constant expectation. 
Data set Best model cross-

validation 
intercept 

cross-
validation 
slope 

cross-
validation 
r2 

forecasting r forecasting 
r2 

Timema 
stripe 

ARMA(1,2) -0.005463 0.938310 0.6974 0.9282905 0.8618326 

Timema 
color 

ARMA(1,2) 0.03373 -1.24295 0.1019 -0.2959806 0.1388707 

G. fortis 
body size 

ARMA(2,2) -0.07142 -1.89589 0.2581 0.2593157 0.2565920 

G. fortis 
beak size 
(PC1) 

ARMA(0,1) -0.1872 -6.0475 0.2769 -0.0460291 0.1405218 

G. fortis 
beak size 
(PC2) 

ARMA(0,1) 0.002860 0.462132 0.03286 0.06829066 0.05675793 

G. 
scandens 
body size 

ARMA(1,2) -0.005377 -0.159569 0.05488 0.6263869 0.3951535 

G. 
scandens 
beak size 
(PC1) 

ARMA(1,2) 0.02175 -0.22193 0.05206 0.2741161 0.1395220 

G. 
scandens 
beak size 
(PC2) 

ARMA(1,2) -0.002938 0.546308 0.05978 0.08118622 0.18602100 

P. 
dominula 
medionigra 

ARMA(1,1) -
0.0005844 

0.4419179 0.01698 0.000594893 0.180800958 

B. betularia 
peppered 

ARMA(1,0) -0.05174 -1.80925 0.6584 0.15945025 0.02692756 
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Table S2. Posterior median and 95% credible intervals for key model parameters 
from the March, April, May melanistic morph model. All continuous covariates 
were standardized. 
Parameter Median Lower bound 95% CI Upper bound 95% CI 
a1 -2.31 -2.44 -2.20 
a2 0.187 0.063 0.309 
b1 -0.163 -0.260 -0.061 
b2 -0.0060 -0.0151 0.0274 
c1 0.164 -0.001 0.341 
c2 -0.197 -0.362 -0.249 
d1 -0.500 -0.749 -0.249 
d2 -0.050 -0.323 0.219 
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Table S3. Summary of model fit for the Geospiza data when rainfall is included in 
the model (based on rainfall and trait measurements from 1973-2012). We report 
the r2 (mean across 3-10 years) for forecasting for the best ARMA model with 
rainfall, as well as the change in forecasting r2, r (unsquared), and the lower and 
upper bounds on of the 95% confidence interval on r (lb and ub, respectively)(all of 
these values are averages across 3-10 year forecasts) obtained by including rainfall 
(positive values mean that rainfall improved the predictive forecast). 
Data_set Model r2 Change in r2 Change in r lb ub 
G. fortis       
body size ARMA(2,2) 0.434 0.178 0.238 0.192 0.102 
beak PC1 ARMA(0,1) 0.174 0.034 0.365 0.027 0.116 
beak PC2 ARMA(0,1) 0.080 0.023 0.207 0.078 0.047 
       
G. scandens       
body size ARMA(2,1) 0.059 -0.337 -0.632 -0.421 -0.206 
beak PC1 ARMA(1,2) 0.249 0.109 -0.476 0.014 -0.210 
beak PC2 ARMA(1,2) 0.121 -0.065 -0.054 0.002 0.100 
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Database S1. Raw population data. See attached .csv sheet. Variable names are as 
follows: location = population/locality, year = year collected, latitude = latitude, 
longitude = longitude, elevation = elevation in meters, host = host plant collected on 
(A = Adenostoma, C = Ceanothus), melanistic = number of melanistic individuals 
collected, striped = number of striped individuals collected, unstriped = number of 
unstriped individuals collected, intermediate = number of intermediately striped 
individuals collected, total = total number of individuals collected, 
proportion_melanistic = proportion of the sample that was melanistic, 
proportion_striped_no_mel = proportion of the sample that was striped (excluding 
melanistics), mean_FebMarApr_temp = mean temperature in Fahrenheit for 
February, March, and April, mean_MarAprMay_temp = mean temperature in 
Fahrenheit for March, April, and May, mean_FebMarAprMay_temp = mean 
temperature in Fahrenheit for February, March, April, and May, refugio_yn = 
Mountain collected on (1 = Refugio, 0 = Highway 154). 
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