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Contemporary and rapid phenotypic evolution has been 
observed in many natural populations of plant and animal 
species1,2, especially during invasion3 and in response to both 

global climate change4 and toxic pollution5. A handful of studies 
have identified the genetic architecture of contemporary adaptive 
evolution of qualitative traits (such as industrial melanism)6 or 
single quantitative traits (such as herbicide detoxification in weeds 
or heavy-metal tolerance)7,8. However, the genetic architecture of 
many traits simultaneously experiencing contemporary adaptive 
evolution, especially assayed at the level of whole genomes, remains 
unexplored, despite its importance for predicting evolutionary tra-
jectories of natural populations9,10.

There are many factors that will affect the evolutionary trajectory 
of a natural population. In addition to well recognized factors, such 
as the source of adaptive genetic variation11,12 and the scenario of 
environmental change12,13, theoretical studies predict that the num-
ber and effect sizes of alleles underlying multi-trait adaptive evolu-
tion depends on the magnitude of pleiotropy14–16. This relationship 
was first investigated using Fisher’s geometric model, in which 
every mutation potentially affects all traits. Under this model, the 
rate of adaptation of an allele should decrease with its degree of plei-
otropy15 owing to the increased probability of antagonistic effects of 
a mutation when more traits are affected. In other words, the proba-
bility that a mutation is advantageous to one trait but detrimental to 
another trait increases with the degree of pleiotropy, leading to the 

concept of the so-called ‘cost of complexity’16. However, in contrast 
to the assumptions of the geometric model, laboratory studies per-
formed on yeasts, nematodes and mice have found that the degree 
of pleiotropy follows an L-shaped distribution such that most muta-
tions affect only a small subset of traits14,15. This distribution would 
diminish the cost of complexity15,16.

Of additional importance is the relationship between the degree 
of pleiotropy and the per-trait effect size of a mutation (termed 
pleiotropic scaling)14,15. Most theoretical models assume that the 
per-trait effect size of a mutation decreases (invariant total-effect 
model) or remains constant (Euclidean superposition model) with 
the degree of pleiotropy16. Laboratory studies, on the other hand, 
have found synergistic pleiotropy in which the per-trait effect size of 
a mutation increases with the number of traits affected by that muta-
tion15. Because this scaling property leads to an increased fitness 
advantage for more pleiotropic mutations, any cost of complexity is 
expected to be greatly alleviated16. Consequently, the combination 
of restricted and synergistic pleiotropy leads to the prediction that 
polymorphisms with intermediate degrees of pleiotropy, although 
rare, should have the highest rate of adaptive evolution15,16. This pre-
diction has not yet been tested empirically.

In its most general sense, pleiotropy refers to the shared impact 
of polymorphisms. This can include the effect of a polymorphism 
on (i) multiple phenotypic traits in one environment, referred 
to as morphological pleiotropy15; (ii) a single phenotypic trait 
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among environments, referred to as environmental pleiotropy15; or  
(iii) multiple traits in multiple environments, hereafter called mor-
pho-environmental pleiotropy. Because wild populations evolve 
in complex abiotic and biotic environments, an exploration of the 
role of pleiotropy requires consideration of the impact of spatial 
environmental heterogeneity. In particular, when the same poly-
morphisms are favoured in distinct micro-habitats, then the suite 
of selective effects may combine to drive rapid adaptive evolution, 
whereas competing demands on a polymorphism across micro-sites 
might inhibit adaptive evolution.

Here, we aimed to generate a comprehensive and unbiased view 
of how a local population of the annual model plant, A. thaliana, 
changed over an eight-year period in nature. During this time 
period, our natural population experienced climate change, while it 
evolved in an environment that is spatially heterogeneous in terms 
of both biotic and abiotic factors. Therefore, this study adopts the 
modern standards of ecological genomics to describe the genetic 
architecture underlying rapid phenotypic evolution of multiple 
quantitative traits within a local plant population in situ.

Results and discussion
Our study focused on the local population TOU-A (east France; 
Supplementary Fig.  1) that experienced an increase in mean 
annual temperature of more than 1 °C over the last 30 years 
(Supplementary Fig. 2). The site occupancy by A. thaliana addition-
ally increased between 2002 and 2007 and remained stable there-
after (Supplementary Fig. 1). Seeds of 80 and 115 individual plants 
(hereafter named accessions) were collected in 2002 and 2010, 
respectively. Previous studies conducted on accessions collected 
in 2002 showed that this population has an estimated outcrossing 
rate of 6% (ref. 17) and is highly diverse at both genetic (based on 
genotyping at 149 SNPs) and phenotypic levels17–20. In addition, the 
TOU-A population presents fine-scale spatial variation for a broad 
range of soil characteristics and is located between two permanent 
meadows dominated by grasses (Supplementary Figs. 1, 3).

A resurrection experiment revealed rapid phenotypic evolu-
tion. To identify phenotypic traits exhibiting evolutionary change 
within eight years, we established a resurrection experiment in 
which the 195 accessions collected in 2002 and 2010 were grown 
under common environmental conditions. This design enabled us 
to differentiate plastic from genetic responses21. The 195 acces-
sions were grown in situ in six representative micro-habitats, con-
sisting of three contrasting soil types crossed with the presence or 
absence of the bluegrass Poa annua, a species frequently associ-
ated with A. thaliana20 (Supplementary Fig.  1). A total of 5,850 
plants were scored for 29 traits related to phenology, resource 
acquisition, shoot architecture, seed dispersal, fecundity, repro-
ductive strategy and survival22. Across the six micro-habitats, we 
detected significant genetic evolution for 16 out of the 29 traits 
(Fig.  1a and Supplementary Table  1). For example, we found a 
significant mean delay of 6.1 days for bolting time and a signifi-
cant mean increase of approximately 7% in the number of fruits 
produced on the main stem (Fig.  2a). Notably, no evolutionary 
change was observed for average total seed production across the 
six micro-habitats, demonstrating that constant seed numbers can 
be maintained through evolution of flexible life-history and indi-
vidual reproductive traits. A comparison of our results with the 
rates of evolution in other plant species23 suggests a moderate rate 
of mean phenotypic evolution in the TOU-A population (Fig. 2a).

Analysis of our sequences of the genomes of the 195 accessions 
(about 25×  coverage) confirmed that the mean phenotypic change 
we observed was not the result of immigration from other pheno-
typically diverse populations. We observed extensive genetic varia-
tion, detecting 1,902,592 SNPs, only 5.6 times less than observed 
in a panel of 1,135 worldwide accessions24. However, the TOU-A 

population appears strongly genetically isolated from other local 
populations sampled within 1 km (Fig.  3a), confirming the negli-
gible role of immigration in the observed phenotypic change.

Similar phenotypic evolution associated with strong genotype-by-
environment interactions. We dissected the phenotypic evolution 
within each micro-habitat to test whether local abiotic and biotic 
growing conditions affect the genotype–phenotype relationships in 
the TOU-A population. Across the 29 traits measured in the six micro-
habitats, 144 of the 174 eco-phenotypes displayed significant genetic 
variance (Fig.  1b), with broad-sense heritability estimates ranging 
from 0.20 to 0.87 (mean H² =  0.57, median H² =  0.60; Supplementary 
Table  2). Average values of the phenotypes differed substantially 
among the six micro-habitats (Fig. 2b and Supplementary Table 1). 
The proportions (ranging from 22.7% to 76.2%) and identities of 
genetically variable traits that evolved in our eight-year timespan also 
depended on the micro-habitat (Figs. 1b, 2c). These results highlight 
the need to consider fine-scale environmental conditions to obtain 
an accurate picture of the diversity of micro-evolutionary phenotypic 
processes occurring within a population.

Although each trait that evolved was consistent in its direc-
tion in all micro-habitats (Fig. 1b), we observed highly significant 
changes in the ranking of accessions among micro-habitats for most 
traits, with a mean across-micro-habitat genetic correlation of 0.46 
(median =  0.46, minimum =  0.04, maximum =  0.89) (Supplementary 
Table 1 and Supplementary Fig. 4). For example, increased alloca-
tion of reproduction to the main stem was consistently observed, 
but different accessions most strongly manifested this allocation 
pattern among micro-habitats (Supplementary Fig. 5). These results 
are in accordance with previous studies revealing genotype-by-envi-
ronment interactions for plant fitness-related traits at the scale of a 
few metres25,26. However, the existence of genotype-by-environment 
interactions does not clarify the extent of pleiotropy governing phe-
notypes in alternative micro-habitats: phenotypic evolution toward 
the same optimum may be driven by loci with alleles differing in the 
magnitude of allelic effects across micro-habitats and/or by distinct 
genetic bases in different micro-habitats27.

Pleiotropy is restricted and synergistic. To characterize the genet-
ics underlying these environmentally dependent genotype–phe-
notype relationships, we used genome-wide associaton (GWA) 
mapping to determine the genetic architecture, the magnitude of 
pleiotropy and the extent of pleiotropic scaling. The TOU-A pop-
ulation is well-suited for GWA mapping, because it is phenotypi-
cally diverse and linkage disequilibrium decays to r² =  0.5 within an 
average of 18 base pairs (Fig. 3b). In agreement with limited link-
age disequilibrium, we observed an L-shaped distribution of the 
size of linkage disequilibrium blocks, with a median size of 780 bp 
(mean size =  5.5 kb) (Supplementary Fig. 6). To verify our ability to 
finely map genomic regions associated with phenotypic variation, 
we first tested for the presence of significant associations of known 
functional polymorphisms. We successfully identified three known 
functional genes, conferring either qualitative or quantitative resis-
tance against bacterial pathogens when the 195 TOU-A accessions 
were infected under controlled conditions. In two out of three cases, 
the most highly associated SNP (hereafter called top SNP) was 
located within the gene (RPS2 and RKS1)19,28 and in the third case it 
was located 15 bp away (RPM1)29 (Supplementary Fig. 7).

To further assess the efficacy of GWA mapping in the TOU-A 
population, we followed the methodology used in ref. 30 to calculate 
enrichments for a priori candidate genes for bolting time in the six 
in situ micro-habitats (Fig. 1b). Because bolting time is a quantita-
tive trait for which the genetic network has been extensively studied, 
it is well suited for calculating enrichments for a priori candidate 
genes. Similar to previous results for a field trial utilizing 197 world-
wide accessions30, the enrichment ratio quickly dropped with the 
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Fig. 1 | Genetic variation among accessions and phenotypic evolution between 2002 and 2010. a, Across the six micro-habitats. Genetic variation was 
detected for the 29 measured phenotypic traits (mixed model, the term accession was treated as random, n =  195). b, Within each ‘soil ×  competition’ 
micro-habitat (mixed model, the term was accession treated as random, n =  195). A, B and C indicate the three types of soil. ‘w/o P. annua’ and ‘w. P. annua’ 
correspond to the absence and presence of P. annua, respectively. The number of genetically variable traits varied between 21 (soil A in the absence of  
P. annua) and 28 (soil C in the presence of P. annua). The percentage of evolved genetically variable traits varied between 22.7% (soil C in the absence 
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condition was defined as an eco-phenotype (n =  144). The rates of evolution are expressed in hg, which corresponds to a metric that scales the magnitude 
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with replacement of genetic values within each year).
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number of top SNPs in five out of six micro-habitats, demonstrat-
ing that candidate genes were overrepresented among top-ranking 
SNPs (Fig. 4a and Supplementary Fig. 8).

Here we illustrate the effects of genetic architecture, magnitude 
of pleiotropy and pleiotropic scaling when considering the 200  
top SNPs (about 0.01% of the total number of SNPs) for each of 
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the 144 eco-phenotypes that were heritable. Although we observed 
significant enrichment for up to the 500 SNPs, the focus on only 200  
top SNPs is conservative in defining pleiotropy and increases the 

fraction of true positives. Our choice of threshold does not mat-
ter: our biological conclusions are robust to successive cutoffs of 
top SNPs within the range of 50–500 SNPs, and to three succes-
sive cutoffs in terms of the significance of SNPs (− log10(P) >  6;  
− log10(P) >  5; − log10(P)>  4; chosen based on refs 31–33).

We first compared the genetic architecture among micro-hab-
itats for GWA results from each of the 144 heritable eco-pheno-
types (Supplementary Fig. 9). The number of genes located within 
2 kb of the 200 top SNPs ranged from 45 (fruit number on basal 
branches in soil B with P. annua) to 141 (maximum height scored 
in soil B without P. annua) (mean =  105 genes, median =  108 genes; 
Supplementary Fig. 10). For a given phenotypic trait, the numbers of 
associated genes and their corresponding allelic effects sometimes 
varied widely across micro-habitats, even when broad-sense heri-
tabilities were similar (Supplementary Fig. 10 and Supplementary 
Table  2); for a notable example, see the results for bolting time 
(Fig. 4a and Supplementary Fig. 11).

The extent of pleiotropy for each top SNP was determined by cal-
culating an effective number of eco-phenotypes, Neff, sharing a given 
top SNP according to ref. 34. This statistic corrects for correlations 
among eco-phenotypes to produce a measurement of pleiotropy 
that is not inflated. In agreement with previous laboratory observa-
tions in yeasts, nematodes and mice15, we found that Neff follows an 
L-shaped distribution (Fig. 5a). More than 78% of top SNPs affected 
a single trait in a single micro-habitat, indicating that genetic bases 
are largely distinct across micro-habitats (Supplementary Figs. 12, 
13), as illustrated for bolting time (Fig. 4b). As previously noted for 
yeast, nematode and mouse studies14,15, this pattern of restricted 
pleiotropy is more consistent with the notion of modular pleiotropy 
(with mutations in genes being organized into structured networks) 
than with universal pleiotropy in Fisher’s geometric model (that is, 
each mutation affects every trait)15,16.

Pleiotropic SNPs were most frequently those demonstrating 
morpho-environmental pleiotropy. In particular, the relative fre-
quency of morpho-environmental pleiotropy increased rapidly with 
the overall degree of pleiotropy, just as morphological pleiotropy 
became relatively less common (Supplementary Fig.  14). Perhaps 
surprisingly, there were very few examples of environmental pleiot-
ropy, in which a significant SNP impacted the same trait in multiple 
environments. Our observation of the predominance of morpho-
environmental pleiotropy is consistent with previous studies in  
A. thaliana reporting that the identity of traits affected by a gene 
can depend on the abiotic and biotic phenotyping environment35,36 
and highlights the importance of spatial environmental heterogene-
ity in determining the role of pleiotropy on phenotypic evolution of 
a suite of quantitative traits.

We found that the total-effect size of a top SNP, calculated by 
either the Manhattan distance (TM) or the Euclidean distance (TE), 
increased with Neff faster than linearly ( =T cN d

M eff , d = 1.226 ±  0.003; 
=T aN b

E eff , b = 0.724 ±  0.0035; Fig.  5b, Supplementary Figs.  13, 15 
and Supplementary Tables  3, 4). This empirical pattern of syner-
gistic pleiotropy contrasts with most theoretical models, which 
typically assume that the per-trait effect size of a mutation decreases 
(d = 0.5 or b = 0, invariant total-effect model) or remains constant 
(d = 1 or b = 0.5, Euclidean superposition model) with the degree 
of pleiotropy16. While previously observed in controlled laboratory 
conditions15, our study reveals that such a pattern of synergistic plei-
otropy can also extend to phenotypes scored in ecological realis-
tic conditions. It should be noted that the non-linear relationship 
between total-effect size and degree of pleiotropy is robust to suc-
cessive decreasing cutoffs of Neff (Supplementary Table 5), suggest-
ing that the pattern of synergistic pleiotropy detected in our study is 
not driven solely by highly pleiotropic SNPs.

Intermediate degrees of synergistic pleiotropy drive adaptive evo-
lution. According to theoretical predictions15,16, the combination of 
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Fig. 4 | Identification of genomic regions associated with bolting time 
variation in the tOu-A population. a, Manhattan plots of mapping  
results for each of the six in situ soil ×  competition treatments. The  
x axis indicates the physical position along the chromosome. The y axis 
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diagram partitioning the bolting time SNPs detected among the lists of 
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underlying bolting time are largely distinct across micro-habitats.

NAtuRE ECOLOGy & EVOLutION | VOL 1 | OCTOBER 2017 | 1551–1561 | www.nature.com/natecolevol 1555

http://www.nature.com/natecolevol


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Articles NATuRe ecoLogy & evoLuTIoN

an L-shape distribution of Neff and synergistic pleiotropy should lead 
polymorphisms with intermediate degrees of pleiotropy, although 
rare, to experience the highest rates of adaptive evolution. One 
approach for determining rates of adaptive evolution is to measure 
the fitness impact of particular SNPs in particular environments. 

Unfortunately, the fitness proxies that we measured (for example, 
total seed production and survival) were not genetically variable in 
some micro-habitats (Fig.  1b). This does not imply an absence of 
additive genetic variance for fitness, because we did not measure 
key germination and seedling survival traits. Therefore, we instead 
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estimated signatures of selection on top SNPs by testing for the 
homogeneity of differentiation across SNP markers between our two 
temporal samples. Such a population genomics approach allows tak-
ing into account both the effect of selective processes at all life-stages 
and the effect of local demographic history between 2002 and 2010.

A genome-wide scan for selection based on temporal differentia-
tion (FST) (Supplementary Fig. 16) revealed a signature of selection 
for top SNPs associated with evolved eco-phenotypes, but not for top 
SNPs associated with unevolved eco-phenotypes; top SNPs jointly 
associated with evolved and unevolved eco-phenotypes revealed 
an intermediate signature of selection (Fig. 5c and Supplementary 
Fig. 13). Because temporal differentiation was tested against changes 
in the genomic background, this result rejects the hypothesis of 
selectively neutral evolution for evolved eco-phenotypes. When 
focusing on top SNPs associated with evolved eco-phenotypes, we 
found that single-trait micro-habitat-specific SNPs were weakly 
differentiated, whereas SNPs exhibiting an intermediate degree of 
pleiotropy revealed the largest fold increase in median temporal FST 
values (Fig. 5d and Supplementary Fig. 13). This pattern is strength-
ened when considering only the top SNPs for evolved phenotypes 
that have a polarity of effects in line with the direction of phenotypic 
evolution (around 75.4% of the total number of top SNPs associated 
with evolved eco-phenotypes; Supplementary Fig. 17). In addition, 
we found that the mean FST value of the top SNPs was significantly 
and positively associated with the rates of phenotypic evolution 
when we considered the evolved eco-phenotypes, but not when  
we considered the unevolved eco-phenotypes (Supplementary 
Fig. 18). Taken together, and considering the prevalence of morpho- 
environmental pleiotropy observed at intermediate degrees of  
pleiotropy (Supplementary Fig. 14), our results suggest the evolu-
tion of a common adaptive strategy that was accelerated owing to 
top SNPs being shared across environments, although they affect 
different traits in different environments.

As previously highlighted for the patterns of restricted pleiotropy 
and synergistic pleiotropy, the relationships between the degree of 
pleiotropy and signatures of selection were robust to the different 
number of top SNPs and thresholds of significance (within the 
range considered; Supplementary Fig. 13).

Identity of candidate genes under directional selection. The most 
pleiotropic genes underlying adaptive evolution in the TOU-A pop-
ulation were determined by retrieving all genes associated with 11 
or more evolved eco-phenotypes. Among the 14 candidate genes 
(Supplementary Table 6), was the floral integrator TWIN SISTER OF 
FT (TSF), which was associated with bolting time (three microhabi-
tats), flowering interval (one micro-habitat), the length of reproduc-
tive period (three micro-habitats), the number of primary branches 
(one micro-habitat) and the escape strategy to competition (three 
micro-habitats). Notably, on the basis of a panel of 948 worldwide 
accessions of A. thaliana, TSF has been found to be significantly 
associated with climate variation (that is, the number of consecu-
tive cold days)37, suggesting that TSF may have a major role in the 
adaptation of A. thaliana to climate at different geographical scales.

We additionally tested for biological processes that were enriched 
in the extreme tail of our genome-wide temporal differentiation 
scan (Supplementary Table  7). In total, 24 biological processes 
were enriched, 15 of which were supported by genes associated 
with phenotypic traits measured in this study (Supplementary 
Table 7). Enrichment for vernalization response was supported by 
VERNALIZATION2 (VRN2), associated with six eco-phenotypes 
including two proxies of fitness (that is, survival and seed pro-
duction; Supplementary Table  7). We also detected many related, 
enriched functions such as stamen development, pollen maturation 
and callose deposition (Supplementary Table 7), these are consis-
tent with the simultaneous evolution of fecundity traits observed 
in this study (Fig. 1). For instance, the candidate gene POWDERY 

MILDEW RESISTANT 4 is traditionally regarded as a defense 
response to wounding and pathogens owing to its role in reinforcing 
the cell wall, although it is also essential for pollen viability and cell 
division38. In this study, POWDERY MILDEW RESISTANT 4 was 
associated with two fecundity traits: mean fruit length on primary 
branches (in soil A without P. annua) and the number of fruits on 
the main stem (in soil C with P. annua; Supplementary Table  7). 
The simultaneous evolution of fecundity traits suggests an adaptive 
strategy of short-lived semelparous species such as A. thaliana in 
crowded environments, where plants tend to escape competition20,39. 
In agreement with this hypothesis, we observed an evolution of an 
escape strategy trait in five out of six micro-habitats (Fig. 1b).

The remaining nine enriched biological processes were sup-
ported by genes that were not associated with any measured phe-
notype. This is not surprising, in that we missed the entire seed and 
seedling stage, and did not capture the entire suite of biotic and abi-
otic factors that can affect selection over time. Among these candi-
date genes was the MADS-box transcription factor FLOWERING 
LOCUS C (FLC) that, in agreement with the recent local warm-
ing experienced by the TOU-A population, supported the strong 
enrichment detected for vernalization response, response to temper-
ature stimulus and regulation of circadian rhythm (Supplementary 
Table 6). FLC is a well-known pleiotropic gene40 that affects many 
traits that we did not measure (such as vernalization response, 
water-use efficiency and regulation of seed dormancy by maternal 
temperature)41–44, suggesting that one or more of these traits may 
have undergone contemporary and rapid phenotypic evolution 
in the TOU-A population. For example, the proportion of acces-
sions with a slow rather than rapid vernalization haplotype at FLC42 
increased between 2002 and 2010 (χ2 test =  16.554, P = 0.000047; 
Supplementary Fig. 19). Such a pattern is understandable in light of 
the increase in the number of chilling degree days observed between 
2002 and 2010 (Supplementary Fig. 2).

It is interesting to note that we identified two central regulators 
of flowering time in our set of candidate genes, that is, FLC and 
TSF. In two Brassica rapa populations that evolved rapidly follow-
ing drought in Southern California10, rapid evolution was in part 
mediated by a homologue of SUPPRESSOR OF OVEREXPRESSION 
OF CONSTANS 1 (SOC1), a target of FLC-mediated transcriptional 
repression45, suggesting that central regulators of flowering time 
have a major role in the response to global warming.

Conclusion
Our ecological genomic comparison of plants separated by eight 
generations revealed rapid multi-trait adaptive evolution that was 
similar among six micro-habitats, but largely mediated by differ-
ent genes. The strong genotype-by-environment interactions high-
light the importance of considering fine-scale ecological variation. 
By limiting the erosion of standing genetic variation, this micro- 
habitat-dependent genetic architecture should allow populations like 
TOU-A to continue to respond to future environmental changes.

In addition, the combination of GWA studies and an in situ res-
urrection experiment validated the prediction that polymorphisms 
with intermediate degrees of pleiotropy, although rare, should have 
the highest rate of adaptive evolution. This result reinforces the 
importance of simultaneous evolution of multiple traits in shaping 
the genomic adaptive trajectory of natural populations. On-going 
resurrection projects in plants46 and long-term population surveys 
of wild animals47 represent an exciting opportunity to test whether 
restricted pleiotropy combined with synergistic pleiotropy also 
underlies contemporary and rapid adaptive evolution in other plant 
and animal species.

Methods
Plant material. The population TOU-A is located under a 350-m electric fence 
separating two permanent meadows experiencing cycles of periodic grazing by 
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cattle in the village of Toulon-sur-Arroux (France, Burgundy, 46° 38′  57.302″  N, 4° 
7′  16.892″  E). Seeds from individual plants were collected in 2002 (TOU-A-2002, 
n =  80) and 2010 (TOU-A-2010, n =  115) according to a sampling scheme allowing 
us to take into account the density of A. thaliana plants along a 350-m transect 
(Supplementary Fig. 1). Differences in maternal effects among the 195 accessions 
collected in 2002 and 2010 were reduced by growing one plant per family under 
controlled greenhouse conditions, for one generation (16-h photoperiod, 20 °C).

Ecological characterization. Eighty-three soil samples collected along the 350-m 
transect were characterized for 14 edaphic factors18: pH, maximal water holding 
capacity (WHC), total nitrogen content (N), organic carbon content (C), C/N ratio, 
soil organic matter content (SOM), concentrations of P2O5, K, Ca, Mg, Mn, Al, Na 
and Fe. Climate data were generated with the ClimateEU v.4.63 software package48.

Phenotypic characterization. An experiment of 5,850 plants was set up at the local 
site of the TOU-A population. The 195 accessions collected in 2002 and 2010 were 
grown in six representative ‘soil ×  competition’ micro-habitats. Each of these micro-
habitats was organized in five blocks. Each of the five blocks corresponded to an 
independent randomization of 195 plants with one replicate per accession collected 
in 2002 and 2010. Seeds were sown in late September to mimic the main natural 
germination cohort observed in the TOU-A population (Supplementary Fig. 1). 
Each plant was scored for a total of 29 phenotypic traits chosen to characterize the 
life history of A. thaliana, including the timing of offspring production or seed 
dispersal, or because they are involved in the response to competition and/or are 
good estimators of life-time fitness and reproductive strategies22.

Phenotypic analyses, natural variation, phenotypic evolution and evolutionary 
rates. We analysed natural variation of all phenotypic traits using the following 
statistical mixed model:

μ= + + + +

+ + + +
+ +
+
+ + ɛ

( )Y sblock soil comp oil comp soil comp

year soil year comp year soil comp year
accession (year) accession (year)soil
accession (year)comp
accession (year)soil comp

(1)

ijklm trait i j k j k j k

l j l k l j k l

m l m l j

m l k

m l j k ijklm

In this model, Y is one of the 29 phenotypic traits, μ is the overall phenotypic 
mean; block accounts for differences between the five experimental blocks within 
each type of soil ×  absence or presence of P. annua experimental combination; soil 
corresponds to the effects of the three types of soil; comp measures the effect of the 
presence of P. annua; year corresponds to the effect of the two sampling years 2002 
and 2010; accession measures the effect of accessions within each year; interaction 
terms involving the accession term account for genetic variation in reaction norms 
of accessions between the three types of soil and the absence or presence of  
P. annua; and ε is the residual term.

All factors were treated as fixed effects, except accession, which was treated 
as a random effect. For fixed effects, terms were tested over their appropriate 
denominators for calculating F values. Significance of the random effects was 
determined by likelihood ratio tests of the model with and without these effects. 
When necessary, raw data were either log-transformed or Box–Cox transformed  
to satisfy the normality and equal variance assumptions of linear regression.  
A correction for the number of tests was performed for each modelled effect to 
control the false discovery rate (FDR) at a nominal level of 5%.

Inference was performed using ReML estimation, using the PROC MIXED 
procedure in SAS v.9.3 (SAS Institute Inc., Cary, North Carolina, USA) for all traits 
with the exception of survival, which was analysed using the PROC GLIMMIX 
procedure in SAS v.9.3.

For all traits, best linear unbiased predictions (BLUPs) were obtained for each 
accession in each of the six experimental conditions, using the PROC MIXED 
procedure in SAS v.9.3:

μ= + + + ɛY block accession (2)imc i m imtrait

For each trait, significant genetic variation among the accessions was detected 
by testing the significance of the accession term in equation (2). A correction 
for the number of tests was performed for the modelled accession effect (across 
the 29 traits within each of the six experimental conditions) to control the FDR 
at a nominal level of 5%. Because A. thaliana is a highly selfing species17, BLUPs 
correspond to the genotypic values of accessions.

In each of the six experimental conditions, rates of evolutionary change based 
on genotypic values of accessions were calculated in haldanes (hg) for all eco-
phenotypes with significant genetic variation among the 195 accessions collected in 
2002 and 2010. hg is a metric that scales the magnitude of change by incorporating 
trait standard deviations49,50. hg values were calculated between 2002 and 2010, as:

=
∕ − ∕( ) ( )

h
x s x s

g
(3)

g
p p2 1

where x corresponds to the mean genotypic value at year 1 (TOU-A population 
collected in 2002) and year 2 (TOU-A population collected in 2010), sp is the 
standard deviation of the genotypic values of the trait pooled across the two years, 
and g is the number of generations. Because only one germination cohort was 
observed every year between 2002 and 2010 (that is, fall germination cohort), only 
one generation per year was considered in the calculation of hg values. For a given 
trait, 95% confidence intervals were estimated based on the distribution of 1,000 
hg values obtained by bootstrapping 1,000 random samplings with replacement of 
genetic values within each year. A hg value was considered significantly different 
from zero if its 95% confidence intervals did not overlap zero.

Sequencing and polymorphism detection. DNA-sequencing experiments were 
performed on an Illumina HiSeq2500 using a paired-end read length of 2 ×  100 pb  
with the Illumina TruSeq SBS v.3 Reagent Kits. Raw reads of each of the 195 
accessions were mapped onto the TAIR10 A. thaliana reference genome Col-0 
with a maximum of 5 mismatches on at least 80 nucleotides. A semi-stringent 
SNPCalling across the genome was then performed for each accession with 
SAMtools mpileup (v.0.01019)51 and VarScan (v.2.3)52 with the parameters 
corresponding to a theoretical sequencing coverage of 30×  and the search for 
homozygous sites.

Patterns of linkage disequilibrium and geographic structure. Considering only 
SNPs with a minor allele relative frequency (MARF) >  0.07, the extent of linkage 
disequilibrium within 30-kb windows on each chromosome were estimated using 
VCFtools53. Linkage disequilibrium blocks across the genome were identified in the 
PLINK environment using the following parameters ‘--blocks no-pheno-req --maf 
0.07 --blocks-max-kb 200’, leading to the identification of 19,607 blocks with at 
least two SNPs (mean number of SNPs per block =  47.6, median number of  
SNPs per block =  12, mean block length =  5.5 kb, median block length =  0.78 kb).  
To position the TOU-A population within the local geographic structure,  
we retrieved the positions of the 214,051 SNPs genotyped on 24 accessions  
from 10 populations located within 1 km of the TOU-A population54 across  
the genomes of the TOU-A population. Clustering genotype analysis was 
performed using the packages gdsfmt and SNPRelate in the R environment55,  
using the snpgdspLD pruning command with the following parameters  
‘ld.threshold =  0.8 slide.max.bp =  500 maf =  0.07’, leaving us with 90,883 SNPs.

GWA mapping and MARF threshold. GWA mapping was run using a mixed-
model approach implemented in the software EMMAX (Efficient Mixed-Model 
Association eXpedited)56. This model includes a genetic kinship matrix as a 
covariate to control for population structure.

Because of bias due to rare alleles30,56,57, we estimated a MARF threshold  
above which the P-value distribution is not dependent on the MARF. We plotted 
the 99% quantile of the P-value distribution of all 144 eco-phenotypes (that is,  
‘micro-habitat ×  trait’ combinations) displaying significant genetic variance  
(Fig. 1) along 50 MARF values (with an increment of 0.01 from 0.01 to 0.5).  
A locally weighted polynomial regression indicated that P-value distributions were 
dependent on MARF value. From visual inspection, we considered a threshold of 
MARF >  0.07, which resulted in a total of 981,617 SNPs for the subsequent analyses 
(Supplementary Fig. 20).

Enrichment for a priori candidate genes. To determine the threshold number 
of top SNPs (that is, SNPs with the highest associations) above which additional 
top SNPs would behave like the rest of the genome, we calculated enrichments 
for a priori candidate genes for natural genetic variation of bolting time observed 
in the six in situ experimental conditions (Fig. 1). On the basis of an algorithm 
described in ref. 30 and a list of 328 candidate genes for bolting time18, enrichment 
was calculated for progressively fewer selective sets of top SNPs within a 20-kb 
window of an a priori candidate gene. For each set of top SNPs, a null distribution 
of enrichment was computed to determine a 95% confidence interval30.

Degree of pleiotropy and pleiotropic scaling. Each trait displaying significant 
genetic variance in a given in situ micro-habitat was considered an eco-phenotype. 
The degree of pleiotropy of a given top SNP was defined as the number of eco-
phenotypes that shared this top SNP. To account for the correlations between 
eco-phenotypes that can overestimate the degree of pleiotropy, we followed 
ref. 14 by estimating for each top SNP an effective number of eco-phenotypes 
as λ= −N N var( )eff  where λvar( ) is the variance of the eigenvalues of the error-
corrected matrix.

The allelic effects were calculated using the mixed model implemented in 
the software EMMAX after fitting the pairwise genetic kinship effect56. Because 
different units were used to measure the 29 traits scored in this study, we calculated 
a standardized allelic effect for each eco-phenotype affected by a top SNP 
according to ref. 14. The standardized effect on eco-phenotype i, denoted by Ai, is 
half the difference in genotypic means between the two homozygous genotypes. 
The total size of the phenotypic effects of a top SNP was then calculated by the 
Manhattan distance58 = ∑ =T Ai

n
iM 1  where n is the degree of pleiotropy and Ai is the 

standardized allelic effect14–16. The pleiotropic scaling relationship between the total-
effect size and the effective number of eco-phenotypes was calculated as =T cN d

M eff .
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The pleiotropic scaling relationship between the total-effect size and the 
effective number of eco-phenotypes was also calculated as =T aN b

E eff
 with  

TE corresponding to the Euclidean distance and calculated as = ∑ =T Ai
n

iE 1
2   

where n is the degree of pleiotropy and Ai is the standardized allelic effect.
The degree of pleiotropy and the pleiotropic scaling relationship were 

calculated for five thresholds of top SNPs (that is, 50 SNPs, 100 SNPs, 200 SNPs, 
300 SNPs and 500 SNPs) and three thresholds of significance (− log10(P) >  6,  
− log10(P) >  5, − log10(P) >  4). To avoid pseudo-replication due to the presence of 
several top SNPs in a given linkage disequilibrium block (n =  19,607 blocks with 
at least two SNPs), the pleiotropic scaling was also calculated for each threshold 
number of top SNPs and each threshold of significance by considering the mean 
value of TM (or TE) and Neff per linkage disequilibrium block containing top SNPs 
and by randomly sampling one top SNP per linkage disequilibrium block (this step 
was repeated 1,000 times).

Genome-wide scan for selection based on temporal differentiation. In the 
following, we outline a procedure based on ref. 59 to test for the homogeneity 
of differentiation across SNP markers between two temporal samples. If all 
SNP markers are selectively neutral, they should provide estimates of temporal 
differentiation drawn from the same distribution, which depends on the strength 
of genetic drift in the population (and therefore on its effective size). By contrast, if 
some marker loci are targeted by selection (or if they are in linkage disequilibrium 
with selected variants), then some heterogeneity in locus-specific measurements of 
temporal differentiation should be observed. This is due to selection that will tend 
to drive measurements of differentiation to values greater (or smaller) than expected 
under drift alone. The rationale of our approach is therefore to identify those SNPs 
that show outstanding differentiation, compared to the neutral expectation.

We measured temporal differentiation between sample pairs using FST. 
Although the FC statistic60 was used in ref. 59, estimators of FST have better statistical 
properties in terms of bias and variance, and multilocus estimates have been 
precisely defined and thoroughly evaluated61.

Using a multilocus estimate of FST from the pair of temporal samples, we 
infer the effective size of the population. Because the 195 A. thaliana accessions 
are considered highly homozygous across the genome, heterozygous sites were 
discarded (see above) and the data therefore consist of haploid genotypes. We 
considered a single haploid population of constant size Ne, which has been sampled 
at generation 0, and τ generations later. Generations do not overlap. New mutations 
arise at a rate μ, and follow the infinite allele model (IAM). Following ref. 62, the 

pairwise parameter FST between the two samples can be calculated: =
θ
−

+ −

θ

θ
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2

where T ≡  τ / Ne and θ ≡  2Neμ. In the low mutation limit (that is, as μ → 0):
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This suggests that a simple moment-based estimator of effective population 
size can be derived as:
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where ̄FST is a multilocus estimate of the parameter FST. In subsequent analyses, 
we use the estimator of ref. 61; preliminary analyses showed that these estimates 
of effective size have a lower bias and variance than averaged estimates based on 
single-locus estimates of FC.

In this study, the pairwise differentiation between the 195 A. thaliana 
accessions samples collected in 2002 and 2010 based on the full set of 1,902,592 
SNP markers was: ̄ = .F 0 0215ST , which gives an estimate of =N 182e  (measured as a 
number of gene copies).

For each SNP, we tested the null hypothesis that the locus-specific 
differentiation measured at this focal marker was only due to genetic drift. For this 
purpose, we computed the expected distribution of FST for each SNP, conditional 
upon the estimated effective size (using the same estimated value for all markers: 

=N 182e ), and the allele frequencies at the focal SNP in the initial sample (that 
is, 80 accessions collected in 2002). We simulated individual gene frequency 
trajectories, as follows.

Suppose that we observe k0 copies of the reference allele, out of n0 sampled 
genes, in the 2002 sample. We assume that these observed counts are drawn 
from a binomial distribution B(n0, π0) where π0 is the (unknown) allele frequency 
of the reference allele in the population. Assuming a β(1, 1) prior distribution 
for π0 (uniform distribution), and using the Bayes inversion formula, the 
posterior distribution of π0 is a β(k0 +  1, n0 −  k0 + 1). For each marker and for 
each simulation, we therefore draw the initial allele frequency π∼0 from a β(k0 +  1, 
n0 −  k0 + 1). We then draw ‘pseudo-observed’ allele counts using a random draw 
from B(n0, π∼0). This procedure allows accounting for the sampling variance in 
initial allele frequencies, instead of fixing π∼0 to the observed frequency in the 
sample, as has previously been done59.

Then we simulated eight generations of drift, using successive binomial 
draws with parameters =N 182e  and the allele frequency in the previous 

generation. In the last generation, a sample of genes is taken as a binomial 
draw with parameters nτ (the sample size in 2010) and πτ

∼  (the simulated allele 
frequency in the last generation).

Next we computed locus-specific estimates of temporal FST from the simulated 
allele counts at the initial and last generation. The whole procedure was repeated 
at least 10,000 times for each marker (additional simulations were performed for 
some markers to obtain non-null P values).

Finally, we assigned a P value to each SNP marker, computed as the proportion 
of simulations giving a locus-specific estimate of FST larger than or equal to the 
observed value at the focal SNP. We checked that the distribution of P values was 
fairly uniform (Supplementary Fig. 21).

Note that all SNP markers with a MARF ≤  0.07 (computed as the overall 
frequency across the two temporal samples) were discarded from the analysis. 
There were 981,617 remaining loci (Supplementary Fig. 16). To avoid any potential 
bias, all the distributions of FST were obtained using only simulated markers with a 
MARF >  0.07.

Enrichment analysis of top SNPs for signals of selection. On the basis of  
the effective number of eco-phenotypes affected by a SNP, we tested whether  
top SNPs related to evolved eco-phenotypes rejected the hypothesis of  
selectively neutral evolution more often than top SNPs related to unevolved  
eco-phenotypes for any given degree of pleiotropy. For each set of top SNPs 
(that is, top SNPs that hit only evolved eco-phenotypes, top SNPs that hit only 
unevolved eco-phenotypes and top SNPs that hit both types of eco-phenotypes), 
we first computed a fold increase in median significance of FST values using 
the following ratio: ratiosignificance =  median of − log10(P) of FST values of n top 
SNPs/median of − log10(P) of FST values of n SNPs randomly sampled across the 
genome, where n =  number of top SNPs. This step was repeated 1,000 times, 
generating a distribution of fold increase in median significance of FST values of 
top SNPs. We assigned a P value by computing the proportion of ratiosignificance 
smaller or equal to 1. The random sampling was done according to a scheme 
that results in sets of SNPs that resemble the original set with respect to  
linkage disequilibrium37.

We then tested whether the strength of selection differed among the degrees 
of pleiotropy by computing a fold increase in median FST values for each set of top 
SNPs, using the following ratio: ratiovalues =  median of FST values of n top SNPs/
median of FST values of all SNPs. This step was repeated 1,000 times, by randomly 
sampling the same number n of SNPs across the genome. This procedure generated 
a null distribution of fold increase in median FST values. We assigned a P value by 
comparing ratiovalues calculated for the set of top SNPs to the quantiles at 95%, 99% 
and 99.9% of the null distribution.

The enrichment analysis of top SNPs for signals of selection was  
calculated for five thresholds of top SNPs (that is, 50 SNPs, 100 SNPs, 200 SNPs, 
300 SNPs and 500 SNPs) and three thresholds of significance (− log10(P) >  6,  
− log10(P) >  5, − log10(P) >  4).

Identity of candidate genes under directional selection and enrichment in 
biological processes. To identify pleiotropic candidate genes associated with 
the 76 evolved eco-phenotypes, we first selected the 50 SNPs that were the most 
associated with each evolved eco-phenotype, leading to a total of 3,800 SNPs. We 
then retrieved all annotated genes located within a 2-kb window on each side of 
those top SNPs, leading to a final list of 4,855 unique candidate genes. We finally 
focused on genes associated with 11 or more evolved eco-phenotypes.

To determine which biological processes were important for adaptation 
of the TOU-A population over eight generations, we tested whether SNPs in 
the 0.1% upper tail of the FST distribution were over-represented in each of 
736 gene ontology biological processes from the GOslim set63. For this, 10,000 
permutations were run to assess significance using the same methodology as 
described previously37. For each significantly enriched biological process, we 
retrieved the identity of all the genes containing SNPs in the 0.1% upper tail of 
the FST distribution.

FLC haplotypes analysis. Following ref. 42, we extracted the 17 SNPs located within 
FLC and we removed from the analysis 44 accessions with missing information 
for more than one SNP. We then merged this dataset with the FLC SNP dataset 
obtained across 1,307 accessions of the Regional Mapping panel project42,54. The 
17 SNP dataset was used as the input into the software fastPHASE v.1.4.8 (ref. 64). 
fastPHASE was run using the same parameters as described previously42 with the 
exception of invoking the -K20 option to obtain the same number of haplotypes 
identified in ref. 42. We identified eight haplotypes among the 151 TOU-A 
accessions. Seventy accessions have a haplotype related to a rapid vernalization 
response (RV haloptype)42, whereas 78 accessions have a haplotype related to a 
slow vernalization response (SV haplotype)42. The remaining three accessions are 
related to an unknown vernalization response profile.

Code availability. Custom scripts developed in this study have been archived 
in an open access local repository (https://lipm-browsers.toulouse.inra.fr/pub/
Frachon2017-NEE/). The code for performing genome-wide scan for selection 
based on temporal differentiation is available from the Zenodo database65.

NAtuRE ECOLOGy & EVOLutION | VOL 1 | OCTOBER 2017 | 1551–1561 | www.nature.com/natecolevol 1559

https://lipm-browsers.toulouse.inra.fr/pub/Frachon2017-NEE/
https://lipm-browsers.toulouse.inra.fr/pub/Frachon2017-NEE/
http://www.nature.com/natecolevol


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Articles NATuRe ecoLogy & evoLuTIoN

Data availability. The raw sequencing data used for this study are available at the 
NCBI Sequence Read Archive (http://ncbi.nlm.nih.gov/sra) through the study 
accession SRP077483.

The phenotypic and genomic files used in this study have been archived in 
an open access local repository (https://lipm-browsers.toulouse.inra.fr/pub/
Frachon2017-NEE/).
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